

EFFECT OF COMBINATIONS OF LACTIC ACID BACTERIA ON THE FERMENTATION OF SUGARCANE SILAGE

Giovanna H. Zapponi¹, **Janaina M. Bragatto¹**, Kachire Zoz¹, Beatriz N. Lima¹, Nailah G. Silva¹, Alan F. Verissimo¹, and Joao L. P. Daniel¹

¹ Department of Animal Science, State University of Maringa, 87020-900, Maringa, Brazil

Introduction

In tropical regions, sugarcane (*Saccharum officinarum* L.) is an important roughage source. However, despite its favorable characteristics for lactic fermentation, sugarcane silage preserved by natural fermentation suffers significant DM loss (\geq 20% DM), due to the conversion of soluble sugars into ethanol and CO_2 by yeast metabolism. Hence, the objective of this study was to examinate the effect of a silage inoculant based on heterofermentative lactic acid bacteria on the mitigation of nutrient loss during sugarcane silage fermentation.

Materials and methods

- Sugarcane was harvested after 14 months of regrowth at approximately 18° brix (DM = 30.3% FM).
- The treatments were: 1) control (without inoculant; **CON**); 2) SiloSolve® AS containing *Lentilactobacillus buchneri* DSM22501 (7.5 × 10⁴ CFU g FM⁻¹), *Enterococcus lactis* DSM22502 (4.5 × 10⁴ CFU g FM⁻¹) and *Lactiplantibacillus plantarum* DSM16568 (3.0 × 10⁴ CFU g FM⁻¹) (**AS**); 3) SiloSolve® FC containing *Lactococcus lactis* DSM11037 (7.5 × 10⁴ CFU g FM⁻¹) and *Lentilactobacillus buchneri* DSM22501 (7.5 × 10⁴ CFU g FM⁻¹) (**FC**).

- Storage periods: 14 and 63 days.
- 5 replicates per treatment.
- Silages were analyzed for microbial counts, pH, and fermentation end-products using standard methods.

Results and discussion

Table 1. Fermentation profile and dry matter loss of sugarcane silage stored for 14 or 63 d

Item	Storage, d	Treatment ¹				<i>P</i> -value ³		
		CON	AS	FC	SEM ²	Т	S	$T \times S$
DM ⁴ , %FM	14	28.0 ^c	29.1 ^b	30.2 ^a	0.18	<0.01	<0.01	<0.01
	63	26.5 ^d	29.3 ^b	30.2 ^a				
Lactic acid bacteria, log CFU g FM ⁻¹	14	6.81 ^c	8.62a	7.88^{b}	0.068	< 0.01	< 0.01	< 0.01
	63	5.93^{d}	5.64 ^d	4.75^{e}				
Yeast, log CFU g FM ⁻¹	14	3.73 ^{ab}	3.59^{b}	3.55^{b}	0.180	0.16	< 0.01	0.47
	63	4.45 ^a	4.38 ^a	3.93 ^{ab}				
pH	14	3.22^{d}	3.13 ^e	3.15 ^e	0.005	< 0.01	< 0.01	< 0.01
	63	3.45 ^a	3.28 ^c	3.31 ^b				
Lactic acid, %DM	14	4.92 ^{cd}	6.72 ^{ab}	4.22 ^d	0.260	< 0.01	< 0.01	80.0
	63	5.86 ^{abc}	6.94 ^a	5.66 ^{bc}				
Acetic acid, %DM	14	1.47 ^d	2.91°	4.14 ^a	0.079	< 0.01	< 0.01	0.08
	63	1.77 ^d	3.49^{b}	4.36 ^a				
Ethanol, %DM	14	9.24 ^b	4.49 ^c	1.09 ^e	0.145	< 0.01	< 0.01	< 0.01
	63	12.2 ^a	5.07°	2.12^{d}				
1,2-Propanediol, mg kg DM ⁻¹	14	367°	273°	1786a	79.2	< 0.01	< 0.01	< 0.01
	63	289 ^c	924 ^b	1921 ^a				
DM loss, %DM	14	9.89 ^b	5.19 ^{cd}	2.12 ^e	0.633	< 0.01	< 0.01	< 0.01
	63	15.9 ^a	5.53^{c}	2.60 ^{de}				

¹CON: control (without inoculant), AS: SiloSolve AS; FC: SiloSolve AS. ²Standard error of the mean. ³T: effect of inoculant, S: effect of storage period, T×S: interaction between inoculant and storage period. ⁴Dry matter corrected for losses of volatile compounds during oven drying.

a,b,c,d Tukey test (α = 0.05).

Conclusion

Either SiloSolve® AS or SiloSolve® FC were effective in inhibiting yeast metabolism and mitigating dry matter loss during sugarcane silage fermentation. SiloSolve® FC was more effective than SiloSolve® AS.